Review of Face Recognition Techniques

نویسندگان

  • Mandeep Kaur
  • Jasjit Kaur
  • K. H. An
  • S. H. Park
  • Y. S. Chung
  • K. Y. Moon
  • M. J. Chung
  • T. Kaur
  • V. H. Gaidhane
چکیده

Face Recognition is used in order to ensure authentication in terms of feature verification. Techniques are defined to identify faces under different situations. This paper conducts a survey of techniques which are available for face detection. Recognition is possible in case features are extracted from the presented face images. For this purpose feature extraction mechanisms like discrete wavelet transformation (DWT), SIFT, linear discriminate analysis (LDA), principal component analysis (PCA) are commonly used. Analysis process indicates that hybrid approach with discrete wavelet transformation produces better results. Comparative study of literature is also presented through this work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive experimental comparison of the aggregation techniques for face recognition

In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

تشخیص چهره با استفاده از PCA و فیلتر گابور

Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017